Lizards, ticks, and Borrelia: Why a herpetologist is studying Lyme disease

Russell Burke & Kaetlyn Kerr & Howard Ginsberg Department of Biology & Urban Ecology Hofstra University

Introduction

 Lyme disease: most common vector-vector-borne disease in U.S.

Pathogen: bacteria Borrelia burgdorferi

Vector: blacklegged tick (Ixodes scapularis)

http://wildlifehealth.tennessee.edu/lyme_gradient/index.htm, Photo: http://lymegradient.blogspot.com/2012/08/more-photos-from-tick-gardens.html

Lyme Disease Cycle

http://www.thefastertimes.com/globalpandemics/2010/01/20/film-review-%E2%80%98under-our-skin%E2%80%99-lyme-disease-documentary/

4 Hypotheses

- Biodiversity or "Dilution" effect hypothesis (Ostfeld and Keesing 2000a & b)
- "Phenology hypothesis" (Ogden et al. 2008)
- "Genetic hypothesis" (Rich et al. 1995, Norris et al. 1996, Qiu et al. 2002)
- "Abundance hypothesis" (Piesman, 2002; Duik-Wasser et al., 2006)

Biodiversity/ Dilution effect

 High species diversity (species richness plus evenness) + reservoir incompetent hosts + reservoir competent hosts= vector infection prevalence

Biodiversity/ Dilution effect

TABLE I. Mammal and bird data used in the dilution potential model, taken from LoGiudice et al. (2003).

		Model parameter		
Hos	st species	Mean larval burden, B_i	Population density, N_i	Reservoir competence, C_i
Eastern chipmunk	Tamias striatus	36	10	55
Raccoon	Procyon lotor	127	0.2	1.3
Short-tailed shrew	Blarina brevicauda	62.9	25	41.8
Songbirds	*	1.7	31.6	11.7
Shrews	Sorex spp.	55.5	25	51.2 <
Squirrels	†	142	8.1	14.7 <
Striped skunk	Mephitis mephitis	66.8	0.05	9.7
Virginia opossum	Didelphis virginiana	254	1	2.6
White-footed mouse	Peromyscus leucopus	27.8	20	92.1 ←
White-tailed deer	Odocoileus virginianus	239	0.25	4.6 ←

* American robin (*Turdus migratorius*), wood thrush (*Hylocichla mustelina*), veery (*Catharus fuscescens*), and ovenbird (*Seiurus aurocapillus*). † Gray squirrel (*Sciurus carolinensis*) and red squirrel (*Tamiasciurus hudsonicus*).

C_i :mean proportion of larval ticks infected by a host.

(Giery and Ostfeld, 2007)

Biodiversity/ Dilution effect

What about lizards?

TABLE I. Results of attempts to experimentally infect naïve western fence lizards by exposing them to feeding by *Borrelia bissettii*-infected *Ixodes* pacificus nymphs.

				or of xenodiagnostic ticks as determined by PCR		
_		Nymphs put on lizar	ds		No. replete xenodiagnostic	No. xenodiagnostic larvae after
Lizard		Infection	No. fed fully		larvae	molting to nymphs
no.	Total no.	prevalence (%)	(%)*	Lizard blood	(pos./no. tested)	(pos./no. tested)
1	16	50	14 (88)	Negative	0/20	0/10
2	31	10-50	9 (29)	Negative	0/20	0/10
3	15	40	4 (27)	Negative	0/15	0/3
4	15	50	7 (47)	Negative	0/19	0/10
5	15	50	10 (67)	Negative	0/21	0/10
6	15	50	5 (33)	Negative	0/18	0/30

* Eighteen of these replete nymphs (range, 2-7 per lizard) were assayed for B. bissettii with negative results.

Borreliacidal activity observed in the blood of the Western Fence Lizard (*Sceloporus occidentalis*) (Kuo et al., 2000)

(Lane et al., 2006)

Infaction status of lizards postnymphal tick ovposure

Biodiversity/ Dilution effect

http://srelherp.uga.edu/lizards/index.htm, http://backyardzoologist.wordpress.com/tag/western-fence-lizards/ http://www.californiaherps.com/noncal/misc/misclizards/pages/e.fasciatus.html

Biodiversity/ Dilution effect

TABLE V. Realized reservoir competence of wild-caught *Eumeces fasciatus* and *Sceloporus undulatus* for *Borrelia burgdorferi* infection shown by xenodiagnosis using *Ixodes scapularis* larvae.

Species	No.	Mean	Range	No. positive/n
	lizards	larvae/lizard	larvae/host	tested (%)
E. fasciatus	20	8.2	(1–18)	0/164 (0)
S. undulatus	10	5.1	(1–11)	1/51 (1.96)

(MD and NY: Giery and Ostfeld, 2007)

More research on lizard competency on the east coast is needed

Proportion of *Ixodes scapularis* nymphs infected with *Borrelia burgdorferi* during larval feeding on tick-exposed southeastern fivelined skinks (*Eumeces inexpectatus*) and green anoles (*Anolis carolinensis*)

TABLE 4

Lizard species	Animal no.	No. of ticks examined	No. of ticks infected	Percent infected
Five-lined	1	6	0	0
skink	2	21	5	23.8
	3	182	61	33.5
	4	45	3	6.7
	5	80	12	15.0
	6	90	19	21.1
	Total	424	100	23.6
Green anoles	1	7	0	0
	2	20	0	0
	3	14	0	0
	4	4	1	25.0
	5	1	0	0
	6	1	0	0
	'Total	47	1	2.1

(LA: Levin et al., 1996)

Phenology hypothesis

- Infected hosts must acquire *B. burgdoferi* infections from previously infected nymphs to pass the spirochete to larvae
- For larvae to become infected, nymph activity must precede larval activity

Abundance Hypothesis

I. scapularis abundance may decrease with latitude

Density per 1,000 m² (log scale) of the most abundant species of ticks (nymphs and adults pooled) collected in each of the 95 study sites (Diuk-Wasser et al., 2006)

Genetic Hypothesis

- Two genetic clades have been identified
 - split *I. scapularis* into north and
 south
- Do these clades affect *I. scapularis* questing behaviors?

TAN

The Team

Russell Burke Hofstra University

Lorenza Beati Georgia Southern University

Howard Ginsberg USGS & URI

Graham Hickling University of TN-Knoxville

Jean Tsao Michigan State U Nicholas Ogden University of Montreal

http://wildlifehealth.tennessee.edu/lyme_gradient/index.htm

SRS Array B- Four-Mile

Savannah River Site (SRS) Array Locations

Rutgers University's Pinelands Field Station(PFS)

49 Sherman traps
4 Tomahawk traps
4 Camera traps
4 Scent lure stations
4 Pitfall/drift fence arrays (20 buckets)
20 Metal coverboards
20 Wooden coverboards
20 Burlap bands

Methods Collecting Data and Marking Individuals

Methods Collecting Data and Marking Individuals

Peromyscus gossypinus

Flag/ Drag

720m total

BUSHNELL

http://lymegradient.blogspot.com/search?updated-max=2012-04-03T21:59:00-07:00&max-results=10&start=20&by-date=false

Capture effort and capture rates (hours per capture) for each sampling method for all

trapping periods (2010-2012)

		PFS			SRS	
	Total trap	4		Total Trap		2
	hours/	Small		hours/	Small	
Method	checks	mammal	Lizard	checks	mammal	Lizard
Sherman traps	18,828ª	1/105	_	116,868	1/618	
Pitfall traps	21,240ª	1/923	1/5,310	91,872	1/1,997	1/718
Coverboards	720 ^b		1/720	8,686	-2	1/20
Burlap	360 ^b		1/90	2,099	-	1/22

^a trap hours; ^b checks

Species richness at SRS with number of species that hosted ticks.

Species richness at PFS with number of species that hosted ticks.

Species	No. infested/ No. captured	% infested	Mean LL (±SE)	Mean NN (±SE)
SRS	49/81	60.49	6.75 (3.15)	1.56 (0.19)
P. laticeps				
Sorex species	7/15	46.67	4.86 (0.75)	0
Plestiodon fasciatus	8/18	44.44	3.33 (0.47)	1.4 (0.12)
P. inexpectatus	4/16	25.00	1	1
Aspidoscelis sexlineata	2/18	11.11	1	1
Scincella lateralis	7/108	6.48	1.43 (0.12)	0
Peromyscus gossypinus	12/184	6.52	1.75 (0.23)	1
Sceloporus undulatus	2/58	3.45	1	3
Anolis carolinensis	1/143	0.70	1	0
PFS	6			
Microtus pinetorum	5/6	83.33	2.75 (0.34)	3
Sorex species	3/5	60.00	2.73 (1.05)	0
Peromyscus leucopus	66/129	51.16	5.54 (1.56)	1.25 (0.14)
Sceloporus undulatus	1/15	6.67	3	0

Both Sites

- Northern mammals had higher tick burdens
- Southern lizards had higher tick burdens

SF	RS	PFS		
Total ticks		Total ticks		
from	% from	from	% from	
hosts	lizards	hosts	lizards	
261	80.5	496	0.6	

Flag/ Drag

Results

I. scapularis on Hosts

**Plestiodon* and *P. gossypinus* mean tick burdens from 2010-2012 combined at SRS.

† *P. leucopus* mean tick burdens from PFS in 2011.

Dilution Effect Hypothesis

- Results at SRS:
 - Confirmed importance of lizards
 (*Plestiodon*)

 Peromyscus were infested by I. scapularis significantly less frequently than were Plestiodon at SRS

Dilution Effect Hypothesis

- In NJ:
 - P. leucopus and Sorex were the predominant hosts for juvenile I. scapularis
 - Significantly higher mean burdens on infested individuals of *P. leucopus* at PFS than *P. gossypinus* at SRS

Phenology Hypothesis

- Emergence juvenile *I. scapularis* at SRS earlier in than at PFS
- Nymphs at both SRS and PFS emerged before larvae
- Does not support Phenology Hypothesis.

Abundance Hypothesis

- Fewer immature *I. scapularis* flag/drag at SRS than at PFS
- Difficulties of collecting juvenile *I. scapularis* in the southeastern U.S. have been seen before

Abundance Hypothesis

- Abundance of immature *I. scapularis* on *Plestiodon* at SRS
- Is there really lower abundance of *I. scapularis* in the south?
- Future research needed

Genetic Hypothesis

Perhaps behavioral differences between *I. scapularis* juveniles at SRS and PFS based on flag/drag success

 clades may quest differently because associated with different host communities

What's Happening now

Series of secondary studies

Laboratory study of reservoir competence of *Sceloporus undulatus* for *Borrelia burgdorferi*.

Infestatio	n	% hosts with	Number of	March Mar	Standard March
Date	host	engorged larvae*	engorged larvae	% infected	# infected/# tested
3 August	mouse [†]	100		79.9 %	167/209
30 July	lizard‡	100	153	0	0/99
7 Sept	lizard	90	42	0	0/34
3 Oct	lizard	70	35	0	0/17
2 Nov	lizard	80	37	0	0/9

* Percent of host animals from which at least one engorged larva was recovered.

+ Five Peromyscus leucopus from uninfected lab colony.

‡ Ten Sceloporus undulatus, wild-caught from southern/central New Jersey.

What's Happening now

- Completion of all btwn site data analysis
- Modeling
- Paper writing

Acknowledgements

Funding from NSF Wonderful hosts at field sites Many wonderful field and lab students!